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Abstract
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numbers; and prove a conjecture posed by Aigner in [A].
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Introduction
Cluster algebras were first introduced in 2002 by Sergey Fomin and Andrei Zelevinsky
in [FZ1]. These have been getting increasingly more attention and are found in many
areas of mathematics; such as combinatorics, as we will see throughout this report,
representation theory, tropical geometry, and many more. Additionally, there are several
applications in other disclipines; for example in theoretical physics, we have Calabi-Yau
manifolds (cover page) and a concept named Seiberg Duality [Bao+].

In the first chapter, we will outline the formal definition of Cluster algebras in purely
algebraic terms. We begin by defining the ambient field, a tropical semifield; then we
describe the three components of a Cluster algebra, namely, the initial cluster x, the
initial coefficients y and the cluster quiver 𝒬 (a type of directed graph). It is worth
noting that Fomin and Zelevinsky first introduced cluster algebras via skew-symmetric
matrices; which then has an associated quiver.

From the above, we can then define the process through which seeds generate the
corresponding cluster algebra; also known as cluster mutation. Finally, after providing
an example of these different concepts, we state a very important result within Cluster
algebras, known as the Positivity theorem, or Positivity conjecture before it was proven
in [LS14] for every skew-symmetric cluster algebra; and in [GHKK] for the general case
of skew-symmetrizable cluster algebras.

In chapter 2, we delve deeper into cluster algebras that are of surface type; i.e. asso-
ciated to a pair (𝑆, 𝑀), with 𝑆 a surface and 𝑀 a set of marked points on the boundary
components of 𝑆. After constructing a triangulation 𝑇 for (𝑆, 𝑀), we can consider an
arc 𝛾 between two marked points. To this arc, we can then assign a snake graph; which
will be useful in later chapters.

In chapter 3, we move to a more number theoretic perspective and begin by explaining
the idea of continued fractions. To each continued fraction [𝑎1, … , 𝑎𝑛], the authors in
[CS1] described a way to assign a sign function, which then can be used to construct a
corresponding snake graph. Consequently, we will describe the idea of the palindromifi-
cation [𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛] of a continued fraction; and provide a few results about it
to then apply to the theory of Markov numbers.

Finally, in chapter 4, we state Frobenius’ conjecture; namely that every Markov triple
(a solution to Markov’s equation) is uniquely determined by its largest element. More-
over, via the triangulated punctured torus, we connect the solutions to Markov’s equation
to the idea of cluster algebras; more precisely, by using mutations, we construct a map
that takes a Markov triple and outputs another Markov triple.

By examining slopes 𝑝/𝑞, with 𝑝 < 𝑞 and gcd(𝑝, 𝑞) = 1 in the natural number lattice
ℕ × ℕ, we can assign to each a Markov number denoted 𝑚𝑝/𝑞. This will be done by
constructing a snake graph corresponding to the slope (via its Christoffel path); and
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calculating the number of perfect matching; which Frobenius showed always is a Markov
number. This will then give us the necessary tools to find a reformulation for Frobenius’
conjecture in purely cluster algebraic terms.

In the last part of chapter 5, by using Skein relations we describe the concepts of a left
and right deformation of an arc 𝛾 between two lattice points in ℕ × ℕ. Consequently,
we will then provide some results which will ultimately be useful to prove a conjecture
posed by Martin Aigner on the ordering of Markov numbers in [A].
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1 Introduction to Cluster algebras
The definition of a Cluster algebra is not particularly difficult; however, it is involved.
We begin by describing the space we are examining. Let (𝒢, ⋅) be any free abelian
(multiplicative) group, with basis y = {𝑦1, … , 𝑦𝑛}. Next, define an operation ⊕ by;

∏
𝑗

𝑦𝑎𝑗
𝑗 ⊕ ∏

𝑗
𝑦𝑏𝑗

𝑗 = ∏
𝑗

𝑦(min(𝑎𝑗,𝑏𝑗))
𝑗 ; (1.1)

e.g. 𝑦3
1𝑦−4

2 𝑦3𝑦5
4 ⊕ 𝑦−1

1 = 𝑦−1
1 𝑦−4

2 . The reader may like to verify that ⊕ is indeed well-
defined. Finally, we obtain that (𝒢, ⊕, ⋅) is semifield, i.e. ⊕ is commutative, associative
and distributive with respect to multiplication in 𝒢; more precisely, due to the nature
of the operation ⊕, (𝒢, ⊕, ⋅) is also known as a tropical semifield. Finally, consider the
group ring ℤ𝒢 of 𝒢 and note that ℤ𝒢 is exactly the ring of Laurent polynomials in the
variables 𝑦1, … , 𝑦𝑛; this will be the used as the ground ring for the corresponding Cluster
algebra.

1.1 Quivers, initial seeds and mutations
A quiver 𝒬 is a directed graph; i.e. a 4-tuple (𝒬0, 𝒬1, ℎ, 𝑡), where 𝒬0 and 𝒬1 are
the collections of vertices and arrows, respectively. Similarly, ℎ, 𝑡 ∶ 𝒬1 → 𝒬0, are set
functions that map the head and tail of each arrow in 𝒬1 in the appropriate direction.
Moreover, if 𝒬 does not have any 2-cycles, i.e. ∘ ⇄ ∘, and does not have any loop, which
is simply an arrow from a vertex to itself, then 𝒬 is called a Cluster quiver. These will
be our main focus throughout the paper.

1

2 3

4

1

2 3

1 2 3

4

Figure 1.1: Examples of Cluster quivers (left and rightmost); and example of quiver that
is not of the Cluster type (center); notice that it has a 2-cycle, namely 1 ⇄ 2,
and has a loop.
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A seed (x, y, 𝒬) is what determines the corresponding Cluster algebra, denoted 𝒜 =
𝒜(x, y, 𝒬), (through a few rules); where

• x = (𝑥1, … , 𝑥𝑛) is the 𝑛-tuple of variables, called the initial Cluster ; e.g. in the
setting of triangulated polygons, these are precisely the diagonals of the triangu-
lation.

• y = (𝑦1, … , 𝑦𝑛) is the 𝑛-tuple of generators, called the initial coefficients; e.g. in
the setting of Conway-Coxeter frieze patterns, all these variables are equal to 1; or
rather, the (free abelian) group corresponding to Conway-Coxeter frieze patterns
is precisely ℤ, with the usual multiplication, which has basis 1.

• 𝒬 a Cluster quiver;
The process of generating a Cluster algebra from an initial seed is by iterating what is
called a Cluster mutation, or simply mutation. A mutation 𝜇𝑘 acts on the initial seed
as follows;

• ̃x ∶= 𝜇𝑘x = {x/𝑥𝑘} ∪ {𝑥′

𝑘}; where,

𝑥′

𝑘 = 1
𝑦𝑘 ⊕ 1

𝑦𝑘 ∏𝑖→𝑘 𝑥𝑖 + ∏𝑘→𝑗 𝑥𝑗

𝑥𝑘
; (1.2)

where the first product is over all arrows going into vertex 𝑘, in the corresponding
quiver; and similarly, the second product is over all arrows going out from vertex
𝑘.

• ̃y ∶= 𝜇𝑘y = (𝑦′

1, … , 𝑦′

𝑛); where,

𝑦𝑗 = {
𝑦𝑗 ∏𝑘→𝑖 𝑦𝑘(𝑦𝑘 ⊕ 1)−1 ∏𝑗→𝑘(𝑦𝑘 ⊕ 1), if 𝑗 ≠ 𝑘
𝑦−1

𝑘 , if 𝑗 = 𝑘;

• Lastly, 𝜇𝑘 acts on the quiver 𝒬 in the following way;
i. For any path 𝑖 → 𝑘 → 𝑗, add an arrow 𝑖 → 𝑗,
ii. Invert all arrows going into and coming out from vertex 𝑘,
iii. Remove any 2-cycles;

through this, we obtain a new quiver 𝒬′ .

Hence, we finally obtain that the new seed after mutation 𝜇𝑘 is precisely (x̃, ỹ, 𝒬′). The
Cluster algebra is then the 𝔽𝒢-subalgebra of ℱ ∶= ℚ𝒢(𝑥1, … , 𝑥𝑛); i.e. it is a subalgebra
of the field of rational functions in 𝑛 variables and coefficients in ℤ𝒢; generated by, what
are called, Cluster variables, which are obtained from the initial seed by a recursively
applying mutations; the reader may quickly notice that given any seed there are 𝑛
different mutations 𝜇1, ..., 𝜇𝑛, one for each vertex of the quiver, which corresponds to
the number of Cluster variables. We denote by 𝒳, the set of all possible Cluster variables
after any arbitrarily long sequence of mutations.1

1Notice that mutations are involutions; i.e. 𝜇𝑘 ∘ 𝜇𝑘 = Id.
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1 2

3

4

5

𝜇3
←→

1 2

3

4

5

Figure 1.2: Example of a quiver mutation 𝜇3.

Example 1.1. Let the initial seed be

(x, y, 𝒬) = ((𝑥1, 𝑥2, 𝑥3), (1, 1, 1), 1 2 3. )

Note that any mutation on y leaves it unchanged as we set it to be a vector of 1’s; hence
we will leave it out. Next, consider 𝜇1, and we then obtain 𝑥′

1 = (1 + 𝑥2𝑥3)/𝑥1, and the
resulting seed is now;

(1 + 𝑥2𝑥3
𝑥1

, 𝑥2, 𝑥3) , 1 2 3 .

We then apply mutation 𝜇2, which yields;

(1 + 𝑥2𝑥3
𝑥1

, 𝑥1𝑥3 + 𝑥3𝑥2
𝑥1𝑥2

, 𝑥3) , 1 2 3 .

Apply mutation 𝜇3;

(1 + 𝑥2𝑥3
𝑥1

, 1 + 𝑥1𝑥3 + 𝑥3𝑥2
𝑥1𝑥2

, 𝑥1 + 𝑥2 + (𝑥2
1 + 𝑥1𝑥2 + 2𝑥2

2)𝑥3 + 𝑥3
2𝑥2

3
𝑥2

1𝑥2𝑥3
) , 1 2 3 .

Finally, we apply mutation 𝜇2 once more;

(1 + 𝑥2𝑥3
𝑥1

, 𝑥1 + 𝑥2 + 𝑥2
2𝑥3

𝑥1𝑥3
, 𝑥1 + 𝑥2 + (𝑥2

1 + 𝑥1𝑥2 + 2𝑥2
2)𝑥3 + 𝑥3

2𝑥2
3

𝑥2
1𝑥2𝑥3

) , 1 2 3 .

In general, this process of mutating will always yield a new unseen Cluster variable; i.e.,
in general, there are infinitely many Cluster variable that arise from Cluster mutations
of an arbitrary seed. One may verify that for an initial seed ((𝑥1, 𝑥2), (1, 1), 1 → 2), we
obtain finitely many Cluster variables; more precisely, there are exactly 5.

In the above example, we can observe that after every mutation, the Cluster variable
obtained is, what is called, a Laurent polynomial. This is no coincidence; and the
following theorem does, in fact, generalize it;
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Theorem 1.2. Let 𝑐 in 𝒳 be any Cluster variable. Then,

𝑐 = 𝑓(𝑥1, … , 𝑥𝑛)
𝑥𝜏1

1 ⋯ 𝑥𝜏𝑛𝑛
;

with 𝑓 ∈ ℤ𝒢[𝑥1, … , 𝑥𝑛].

This result is particularly surprising as a priori any Cluster variable is simply a
rational polynomial in the variables 𝑥1, … , 𝑥𝑛; while in other settings, when dividing
two seemingly unrelated multinomials, we in general are not able to simplify it so that
we have a monomial in the denominator.
Remark 1.3. The above result can be strengthened further by changing ℤ𝒢[𝑥1, … , 𝑥𝑛] to
ℤ≥0𝒢[𝑥1, … , 𝑥𝑛], also known as the positivity conjecture; in other words, all coefficients
of 𝑓, above, are positive. In [LS14], the authors finally prove the conjecture for all skew-
symmetric cluster algebras; and the more general case of skew-symmetrizable cluster
algebras has been proven in [GHKK].
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2 Cluster algebras of surface type
Before we begin, we define what we mean by surface, or of surface type;

Definition 2.1. A surface (𝑆, 𝑀) is a connected oriented Riemann surface 𝑆 with
(possibly empty) boundary 𝜕𝑆; together with a finite collection 𝑀 ⊂ 𝑆 of marked
points; with the only condition that each boundary component must contain at least
one marked point.

Figure 2.1: Examples of marked surfaces, with 0, 0, 1, and 2 boundary components,
respectively.

Any marked point 𝑝 ∈ 𝑀 such that 𝑝 ∉ 𝜕𝑆 is referred to as a puncture. Once we have
a surface, we define additional structures.

Definition 2.2. (Ordinary arcs) An arc 𝛾 in (𝑆, 𝑀) is a curve in 𝑆, considered up to
isotopy, such that;

• Its endpoints are in 𝑀,

• It does not intersect itself, except for possibly having overlapping endpoints,

• Besides its endpoints, 𝛾 is disjoint from 𝑀,

• 𝛾 does not cut out an unpunctured monogon or bigon.

For the sake of labeling, an arc that starts and ends in the same points is called a
loop. Moreover, suppose we have two arcs 𝛾, ̃𝛾 on a surface 𝑆, then we define 𝑒(𝛾, ̃𝛾)
to be the number of intersections between the two arcs when considering all possible
isotopy1 equivalent arcs for both. If 𝑒(𝛾, ̃𝛾) = 0, then we say that the arcs 𝛾 and ̃𝛾
are compatible. If a maximal triangulation 𝑇 consists entirely of pairwise compatible
arcs, then it is called an ideal triangulation, which each triangular region called an ideal
triangle.

1An isotopy is a homotopy ℎ ∶ [0, 1]×𝑋 → 𝑌 such that for each 𝑡 ∈ [0, 1], ℎ(𝑡, •) is a homeomorphism.
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Figure 2.2: Ordinary triangle, two-vertex triangle, self-folded triangle and one-vertex
triangle.

In the figure above we see the four possible types of ideal triangles in a possible ideal
triangulation. In this paper we will focus mostly on the first (and perhaps the fourth one
too) as the other two require a marked point that is not on any boundary component;
which we will often not consider for the sake of length and clarity.

Theorem 2.3. [Sch23] The number of arcs in an ideal triangulation is exactly

𝑛 = 6𝑔 + 3𝑏 + 3𝑝 + 𝑐 − 6;

where 𝑔 is the genus of 𝑆, 𝑏 is the number of boundary components, 𝑝 is the number of
punctures and 𝑐 = |𝑀| − 𝑝 is the number of marked points on 𝜕𝑆.

Remark 2.4. Note that each ideal triangulation is connected to all other possible trian-
gulations by a series of flips; that is, replacing an arc 𝛾 by another arc ̃𝛾, so to obtain
our new triangulation ̃𝑇 = (𝑇 \{𝛾}) ∪ { ̃𝛾}, in the following way;

𝛾 ̃𝛾flip

Figure 2.3: Example of flip at arc 𝛾.

2.1 Cluster algebras from surfaces
Now that we outlined the necessary definition, we will define the cluster algebra associ-
ated to a surface. Let 𝑇 = {𝜏1, … , 𝜏𝑛} be an ideal trangulation of a surface (𝑆, 𝑀), and
𝒬𝑇 a cluster quiver defined as follows. The vertices of 𝒬𝑇 are in bijection with the arcs
of 𝑇; i.e. 𝜏𝑖 ↦ 𝑖. The arrows of 𝒬𝑇 are determined in the following way; for any triangle
Δ in 𝑇, we draw an arrow 𝑖 → 𝑗 if 𝜏𝑖 and 𝜏𝑗 are sides of Δ with 𝜏𝑗 following 𝜏𝑖 in the
clockwise order.
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𝜏1

𝜏2

𝜏3
𝜏4

𝜏5

𝜏6

1

2 3

4

56

Figure 2.4: Example of triangulated surface (with 2 boundary components, also known
as an annulus) and its corresponding quiver.

In order to define an initial seed, we set the initial cluster x𝑇 = {𝜏1, … , 𝜏𝑛}; and we set
y𝑇 = {𝑦1, … , 𝑦𝑛} to be the initial coefficients (vectors) generating the tropical semifield
𝒢. Then, the cluster algebra 𝒜 = 𝒜(xT, y𝑇, 𝒬𝑇) is called the cluster algebra associated
to the surface (𝑆, 𝑀) with principal coefficients in 𝑇.

2.2 Snake graphs
A snake graph 𝒮 is a graph consisting of tiles. A tile 𝐺 is a square graph whose sides are
orthogonal to the fixed basis; which we consider to be the standard orthonormal basis
of the plane. Each tile will be isomorphic in the sense that side lengths are all equal.

𝐺
South

West

North

East

Figure 2.5: A tile 𝐺 with sides labeled to denote the orientation

Then, the snake graph 𝒮 = (𝐺1, … , 𝐺𝑑) is a connected graph consisting of 𝑑 tiles
𝐺1, … , 𝐺𝑑, where the tiles 𝐺𝑖 and 𝐺𝑖+1 share exactly 1 edge, 𝑒𝑖; which is either the
north or east edge of tile 𝐺𝑖. Next, we define the sign function

𝑓 ∶ {edges of 𝒮} → {+, −}.

such that for each tile 𝐺𝑖 the following hold;
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• The north and west edge have the same sign,

• The south and east edge have the same sign,

• The sign on the south edge is different than the sign on the north edge.
The reader may wonder about the purpose of having two, a priori, equal representations
of a snake graph; however, in section 3, after introducing continued fractions, the sign
function will be of particular convenience to us.

𝐺1 𝐺2𝑒1

𝐺3
𝑒2

𝐺4𝑒3 𝐺5𝑒4

𝐺6
𝑒5

𝐺7
𝑒6

𝐺8𝑒7

−
−

−
− +

+

−
−

−

Figure 2.6: Example of snake graph and sign function applied to it.

2.3 Labeled snake graphs from surfaces
Suppose we now want to construct a snake graph corresponding to an arc on any given
triangulated surface. Suppose that 𝑇 is an ideal triangulation of some surface (𝑆, 𝑀);
and let 𝛾 be an arc that is not in 𝑇, with starting point 𝑠, and endpoint 𝑡 (i.e. we are
choosing an orientation within our surface), both of which are contained in 𝑀.

𝑠 𝑡
�Δ0

Δ1

Δ2

Δ3

Δ4 Δ5

Δ6 Δ7

𝑒1

𝑒2

𝑒3

𝑒4 𝑒5

𝑒6

𝜏1
𝜏2 𝜏3 𝜏4 𝜏5

𝜏6

𝜏7

>

Let 𝑠 = 𝑝0, 𝑝1, … , 𝑝𝑑+1 = 𝑡 be the points, in order, in which 𝛾 intersects any element
of 𝑇. Then for 𝑖 = 1, … , 𝑑, let 𝜏𝑖 be the arc in 𝑇 containing the point 𝑝𝑖; and let Δ𝑖−1, Δ𝑖
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be the two ideal triangles adjacent to 𝜏𝑖. Furthermore, for all 𝑖, the arcs 𝜏𝑖, 𝜏𝑖+1 form
two sides of the ideal triangle Δ𝑖; where we denote the third arc by 𝑒𝑖. Finally, we let
𝐺𝑖 be the quadrilateral in 𝑇 that contains the arc 𝜏𝑖 as a diagonal; then 𝐺𝑖 is precisely
a tile as 2.2.

We can additionally assign a sign function 𝑓 on the edges 𝑒1, … , 𝑒𝑑 by

𝑓(𝑒𝑗) = {
+1 if 𝑒𝑗 lies on the right of 𝛾 when passing through Δ𝑗;
−1 otherwise.

Then, the labeled snake graph 𝒮𝛾 = (𝐺1, … , 𝐺𝑑) with sign function 𝑓 is the snake graph
associated to the arc 𝛾. Next, define the weight 𝑥(𝑒), where 𝑒 is any edge of 𝒮𝛾, to be
the cluster variable associated with the arc 𝜏(𝑒) of 𝑇.

2.4 Perfect matchings, Height and the Expansion
formula

Recall that a perfect matching 𝑃 of a graph 𝐺 is a collection of edges in which every vertex
of 𝐺 is incident with exactly 1 edge in 𝑃. We denote the set of all perfect matchings of 𝐺
by ℳ(𝐺). Moreover, note that every snake graph has precisely 2 perfect matchings that
contain boundary edges only. We denote these by 𝑃− and 𝑃+

2. Then for a matching 𝑃
we define 𝑃− ⊖ 𝑃 = (𝑃− ∪ 𝑃)\(𝑃− ∩ 𝑃) to be the symmetric difference of 𝑃− and 𝑃. In
other words, 𝑃− ⊖𝑃 is the set of boundary edges of a subgraph 𝒮𝑃, possibly disconnected
and made of tiles 𝐺𝑖; i.e.

𝒮𝑃 = ⋃
𝑖

𝐺𝑖.

We then define the height monomial of 𝑃 by

𝑦(𝑃 ) = ∏
𝐺𝑖 a tile in 𝒮𝑃

𝑦𝑖.

Consider an arbitrary marked surface (𝑆, 𝑀), with triangulation 𝑇 = {𝜏1, … , 𝜏𝑛}, and
we let 𝒜 = 𝒜(x𝑇, y𝑇, 𝒬𝑇) be its corresponding Cluster algebra; where x𝑇 = (𝑥1, … , 𝑥𝑛)
correspond to the diagonals in the triangulation 𝑇, and y𝑇 = (𝑦1, … , 𝑦𝑚) correspond to
the boundary arcs of the marked surface, and are also the basis for the corresponding
tropical semifield. In [MSW], the authors proved the following;

Theorem 2.5. Let 𝛾 be an arc not in the triangulation 𝑇, such that it intersects the
diagonals {𝜏𝑖1

, … , 𝜏𝑖𝑑
}. Then the cluster variable 𝑥𝛾 is equal to

𝑥𝛾 = 1
cross(𝛾)

∑
𝑃 ∈ ℳ(𝒮𝛾)

𝑥(𝑃)𝑦(𝑃 ). (2.1)

2The choice of which is 𝑃− will only make a difference in the setting of Cluster algebras with non-trivial
coefficients.
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Where 𝑥(𝑃) = ∏𝑒∈𝑃 𝑥(𝑒) is the weight of 𝑃 and 𝑦(𝑝) is the height of 𝑃. Moreover,
cross(𝛾) is the monomial consisting of the cluster variables that are associated to the
arcs {𝜏𝑖𝑗

}𝑑
𝑗=1; in other words, cross(𝛾) = ∏𝑑

𝑗=1 𝑥𝑖𝑗
. In addition, the authors showed that

if we iterate this process over all possible arcs 𝛾 in the surface (𝑆, 𝑀), these 𝑥𝛾 generate
the corresponding Cluster algebra.

𝛾

𝑎

𝑏
𝑐

𝑑

𝑒

𝑓

1 2
3

1 2

3

𝑏
𝑎

22

𝑓
1

𝑒
3

𝑑
𝑐

𝑥2𝑥3 𝑥3𝑦1

𝑥1𝑦1𝑦2
𝑥1𝑥2𝑦1𝑦2𝑦3

𝑦1

𝑦2

𝑦3

Figure 2.7: In this figure we have a triangulated hexagon and an arc 𝛾 (left), with its
corresponding labeled snake graph 𝒮𝛾(center); and its perfect matchings with
their corresponding monomials calculated through the expansion formula 2.1.

To better explain how the height monomial works, we can see in the above figure that
from the top left perfect matching (the one with only boundary edges, 𝑃−) to the top
right one, we are rotating tile 1, which gives the 𝑦1 term. To then go to the bottom left,
we rotate tile 2, which yields the term 𝑦2. Finally, to go from bottom left to bottom
right (the one with only boundary edges, 𝑃+), we rotate tile 3 which yields the 𝑦3 term.
Moreover, the weight is calculated by looking at which edges are contained in the perfect
matching. For example, in the top left perfect matching, we see that it contains edge 2
and 3 of our triangulation; these yield the 𝑥2 and 𝑥3 terms.

Finally, from Figure 2.7, we obtain that

𝑥𝛾 = 𝑥2𝑥3 + 𝑥3𝑦1 + 𝑥1𝑦1𝑦2 + 𝑥1𝑥2𝑦1𝑦2𝑦3
𝑥1𝑥2𝑥3

.

In the case of triangulated polygons, it is clear that there are finitely many arcs, up
to isotopy; whilst in the case of, for example, an annulus, there are infinitely many arcs;
e.g. we can have a curve that loops around the inner boundary component 𝑛 times. This
is precisely why their corresponding Cluster algebras are finite and infinite, respectively.

2.5 Skein relations
Suppose we have two arcs 𝛾1, 𝛾2 such that they intersect at some point 𝑥. Then we
can define a concept called smoothing at 𝑥; which is a collection of pairs {𝛾3, 𝛾4} and
{𝛾5, 𝛾6} obtained from {𝛾1, 𝛾2} by replacing the crossing ; in a small neighborhood
of 𝑥, with the pair and .
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= +

=
+ + +

Figure 2.8: Example of a smoothing process.

In [MW], the authors proved the following; also known as the Skein relations;

Theorem 2.6 (Skein relations). If {𝛾3, 𝛾4} and {𝛾5, 𝛾6} are curves obtained from
{𝛾1, 𝛾2} through a smoothing process, then

𝑥𝛾1
𝑥𝛾2

= 𝑦34𝑥𝛾3
𝑥𝛾4

+ 𝑦56𝑥𝛾5
𝑥𝛾6

;

for some 𝑦34, 𝑦56 in 𝒢 and 𝑥𝛾𝑖
is the cluster algebra element corresponding to the arc

𝛾𝑖. Moreover, we if we apply this to a self-crossing curve 𝛾, through which we obtain 𝛾1
and 𝛾2, then

𝑥𝛾 = 𝑦1𝑥𝛾1
+ 𝑦2𝑥𝛾2

;

for some 𝑦1, 𝑦2 in 𝒢.

It turns out that, by using Skein relations, we find that a product of cluster variables
corresponds to an arc in the surface. If we let ℬ be the collection of all the curves that
arise by applying the smoothing process to all possible curves, we get that ℬ forms a
basis for the cluster algebra 𝒜 = 𝒜(x, y, 𝒬). This has been proven in [MSW].
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3 Continued fractions
A continued fraction is a particularly useful tool in number theory; it allows us to
represent any real number as a sequence; more precisely,

[𝑎1, 𝑎2, … , 𝑎𝑛] = 𝑎1 + 1

𝑎2 + 1

⋱ + 1
𝑎𝑛

.

For example, consider the real numbers 22/7,
√

2; then, 22/7 = 3 + 1/7 = [3; 7], and

√
2 = 1 + 1

2 + 1
2+ ⋱

= [1; 2, 2, 2, … ].

The reader may notice that for 𝛼 ∈ ℝ, then the continued fraction of 𝛼 is finite if and
only if 𝛼 ∈ ℚ. In fact, if 𝛼 = 𝑝/𝑞, for 𝑝, 𝑞 ∈ ℤ, then the continued fraction algorithm is
nothing but the Euclidean algorithm applied to 𝑝 and 𝑞.

A continued fraction [𝑎1, … , 𝑎𝑛] is positive if 𝑎𝑖 ∈ ℤ≥0 for all 𝑖; and we say it is simple
if 𝑎1 ∈ ℤ and 𝑎𝑗 ∈ ℤ≥1 for 2 ≤ 𝑗 ≤ 𝑛. Moreover, if 𝑎𝑛 = 1, and clearly 1/1 = 1, it
holds that [𝑎1, … , 𝑎𝑛−1, 1] = [𝑎1, … , 𝑎𝑛−1 +1]. This identity yields the following classical
result;

Theorem 3.1 ([HW61], Theorem 162 p.g. 136).

(i) There exists a bijection between the set of rational numbers greater than 1, i.e.
ℚ>1, and the set of positive, finite continued fractions whose last coefficients (e.g.
𝑎𝑛 in the paragraph above) is at least 2.

(ii) There exists a bijection between the set of rational numbers ℚ, and the set of simple,
finite continued fractions whose last coefficient is at least 2.

3.1 Snake graphs of a continued fraction
In [CS2] the construction of a snake graph, by using the sign function described in the
previous chapter, corresponding to a continued fraction is described; it is done in a way
such that the number of perfect matchings is equal to the numerator of the fraction;
which we will later formally prove. For a continued fraction [𝑎1, … , 𝑎𝑛], we denote by
𝒮[𝑎1, … , 𝑎𝑛] its corresponding snake graph.
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Consider [𝑎1, … , 𝑎𝑛], and the sequence

(−, … , −⏟ , +, … , +⏟ , −, … , −⏟ , … , 𝜖, … , 𝜖⏟),
𝑎1 𝑎2 𝑎3 … 𝑎𝑛

(3.1)

where 𝜖 = {
+ if 𝑛 is even;
− if 𝑛 is odd

.

Then, the snake graph 𝒮[𝑎1, … , 𝑎𝑛] is the snake graph with precisely 𝑎1 + ⋯ + 𝑎𝑛 − 1
tiles determined by the sign sequence 3.1. For the reader’s understanding, we provide a
worked out example.

Example 3.2. Consider the fraction 31/7, with its corresponding continued fraction
[4, 2, 3]. We get the sign sequence (−, −, −, −, +, +, −, −, −); which yields the
following snake graph (on the left);

−
−

−
− +

+

−
−

−

2 3

4 5 9

13

22 31

On the right, we have the snake graph in which the number at tile 𝐺𝑖 indicates the
number of perfect matchings of the subsnake graph given by the first 𝑖 tiles. We can take
the above result to yield an even stronger condition on the relation between continued
fractions and snake graphs. In [CS2], the authors prove the following result;

Theorem 3.3. If 𝑚(𝒮) denotes the number of perfect matchings of 𝒮, then

[𝑎1, … , 𝑎𝑛] = 𝑚(𝒮[𝑎1, … , 𝑎𝑛])
𝑚(𝒮[𝑎2, … , 𝑎𝑛])

.

Proof. We begin by proving that the numerator 𝒩[𝑎1, … , 𝑎𝑛] of the continued fraction
[𝑎1, … , 𝑎𝑛] is equal to the number of perfect matchings of the snake graph 𝒮[𝑎1, … , 𝑎𝑛];
then as the denominator of [𝑎1, … , 𝑎𝑛] is the numerator of [𝑎2, … , 𝑎𝑛], the result follows.

We begin by induction on 𝑛; if 𝑛 = 1 then 𝒮[𝑎1] is a zigzag snake graph with precisely
𝑎1 − 1 tiles. For 𝑎1 = 1, this is a single edge, which has precisely 1 perfect matching. If
𝑎1 > 1, then we have precisely one perfect matching that does not contain the south edge
of the first tile 𝑒0; therefore it must contain the west edge of the first tile 𝑏0. Moreover,
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it must be a perfect matching of the snake graph without its first tile. By induction we
obtain that there are precisely 𝑎1 perfect matchings.

In the case when 𝑛 > 1, let 𝑃 be a perfect matching of the snake graph 𝒮[𝑎1, … , 𝑎𝑛]
with denominator denoted by 𝒩[𝑎1, … , 𝑎𝑛]. Since 𝑛 > 1, there must be a subsnake
graph (𝐺𝑖−1, 𝐺𝑖, 𝐺𝑖+1) that is straight. If 𝑃 does not contain the two boundary edges
of 𝐺𝑖, then the restriction of P to 𝒮[𝑎1] and 𝒮[𝑎2, … , 𝑎𝑛] are perfect matchings. By
induction, we get exactly 𝑎1𝒩[𝑎2, … , 𝑎𝑛] perfect matchings.

Suppose 𝑃 contains he two boundary edges of 𝐺𝑖, then the restriction of 𝑃 to 𝒮[𝑎1]
and 𝒮[𝑎2] are contain only boundary edges as both are zigzag graphs. Similarly, the
restriction to 𝒮[𝑎3, … , 𝑎𝑛] is a perfect matching. By induction we get 𝒩[𝑎3, … , 𝑎𝑛] per-
fect matchings. If we add the two cases together, we obtain a total of 𝑎1𝒩[𝑎2, … , 𝑎𝑛] +
𝒩[𝑎3, … , 𝑎𝑛] perfect matchings.

Let 𝑁 and 𝐷 be the numerator and denominator of the continued fraction [𝑎3, … , 𝑎𝑛];
then observe that

[𝑎1, … , 𝑎𝑛] = 𝑎1 + 1

𝑎2 + 𝐷
𝑁

;

= 𝑎1(𝑎2𝑁 + 𝐷) + 𝑁
𝑎2𝑁 + 𝐷

.

Since 𝑁 and 𝐷 are relatively prime (by their definition), we get that the fraction above
is reduced; and more precisely, 𝒩[𝑎1, … , 𝑎𝑛] = 𝑎1(𝑎2𝑁 + 𝐷) + 𝑁. Similarly, notice that

[𝑎2, … , 𝑎𝑛] = 𝑎2 + 𝐷
𝑁

;

= 𝑎2𝑁 + 𝐷
𝑁

.

Thus, if we combine the two expressions we just obtained, we see that

𝒩[𝑎1, … , 𝑎𝑛] = 𝑎1𝒩[𝑎2, … , 𝑎𝑛] + 𝒩[𝑎3, … , 𝑎𝑛];

as required. As previously mentioned, as the denominator of [𝑎1, … , 𝑎𝑛] is simply the
numerator of the continued fraction [𝑎2, … , 𝑎𝑛], the result holds for the denominator
too.

In other words, the number of perfect matchings of the snake graph 𝒮[𝑎2, … , 𝑎𝑛]
is equal to the denominator of the continued fraction [𝑎1, 𝑎2, … , 𝑎𝑛]. Applying it to
Example 3.2, we get the continued fraction [2, 3], with sign sequence (+, +, −, −, −);
which yields the following

−
− +

+
+

2 3 5

7
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as required. Finally, let 𝑓 be the map from a snake graph 𝒮 to a continued fraction
by the sign sequence; then Theorem 3.1 can be represented and strengthened via the
following result;

Theorem 3.4 ([CS2], Theorem 4.1). There is a commutative diagram;

{ pairs (𝒮, 𝑒𝑑) of a snake graph 𝒮
with 𝑑 ≥ 1 tiles, and 𝑒𝑑 in last tile } { positive continued fractions different

from the continued fraction [1] }

{ snake graphs 𝒮 with
at least 1 tile } { positive continued fractions

with last coefficient > 1 }

ℚ>1

𝜒

forget 𝑒𝑑 𝑔

𝐹 ′

𝐸𝑣

𝐺

𝐹

≅

≅

≅

where the maps are defined as follows:

• 𝐹 maps the pair (𝒮, 𝑒𝑑) to the continued fraction defined by the sign sequence

(𝑓(𝑒0), 𝑓(𝑒1), … , 𝑓(𝑒𝑑));

• 𝐹 ′ maps the snake graph 𝒮 to the continued fraction defined by the sign sequence

(𝑓(𝑒0), … , 𝑓(𝑒𝑑−1), 𝑓(𝑒𝑑−1)).

• 𝐺 sends [𝑎1, … , 𝑎𝑛] to the pair consisting of the snake graph 𝒮[𝑎1, … , 𝑎𝑛] and an
edge 𝑒𝑑 determined by the sign sequence.

• 𝑔 is defined by

𝑔([𝑎1, … , 𝑎𝑛]) = {
[𝑎1, … , 𝑎𝑛−1 + 1], if 𝑎𝑛 = 1
[𝑎1, … , 𝑎𝑛] if 𝑎𝑛 > 1.

• 𝜒 maps a snake graph 𝒮 to the quotient

𝑚(𝒮)

𝑚 (𝒮\ { first zigzag
subsnake graph })

• 𝐸𝑣 is the bijection in Theorem 3.1; which sends a continued fraction to its value.

Additionally, 𝐹, 𝐺, 𝐹 ′, 𝜒 and 𝐸𝑣 are bijections.
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To better understand how the map 𝜒 works, recall Example 3.2, i.e. we have the
fraction 31/7 = [4, 2, 3], and notice that its first zigzag subsnake graph is precisely that
determined by the first 4 tiles; so that we obtain

𝒮\ { first zigzag
subsnake graph } =

which corresponds to the continued fraction [1, 1, 3]; hence we have precisely that 𝜒([4, 2, 3]) =
𝑚(𝒮[4, 2, 3])/𝑚(𝒮[1, 1, 3]) = 31/7. This is quite intuitive as a zigzag subsnake graph has
a sign sequence of the form (±, … , ±); in other words, the corresponding continued frac-
tion is of length 1; thus 𝜒 is essentially removing the first entry of a continued fraction,
almost applying Theorem 3.3.

3.2 Palindromification
Observe that given any snake graph 𝒮, rotating it by 180∘ yields an isomorphic snake
graph. Similarly, if we mirror 𝒮 over the lines 𝑦 = 𝑥, and 𝑦 = −𝑥, we also obtain
isomorphic snake graph. Moreover, observe that;

[𝑎1, … , 𝑎𝑛] = 𝑎1 + 1

𝑎2 + 1

⋯ + 1
𝑎𝑛

= 𝑎1 + 1

𝑎2 + 1

⋯ + 1

𝑎𝑛 − 1 + 1
1

= [𝑎1, … , 𝑎𝑛 − 1, 1].

This yields to the following observation;

Theorem 3.5. We have the following isomorphisms; where 𝑒𝑑 is the edge of the final
tile:

(a) Mirror over 𝑦 = 𝑥;

𝒮[𝑎1, … , 𝑎𝑛] ≅ 𝒮[1, 𝑎1 − 1, 𝑎2, … , 𝑎𝑛].

(b) Mirror over 𝑦 = −𝑥;

𝒮[𝑎1, … , 𝑎𝑛] ≅ {
𝒮[1, 𝑎𝑛 − 1, … , 𝑎2, 𝑎1] if 𝑒𝑑 is north;
𝒮[𝑎𝑛, … , 𝑎1] if 𝑒𝑑 is east.
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(c) Rotation by 180∘;

𝒮[𝑎1, … , 𝑎𝑛] ≅ {
𝒮[1, 𝑎𝑛 − 1, … , 𝑎2, 𝑎1] if 𝑒𝑑 is east;
𝒮[𝑎𝑛, … , 𝑎1] if 𝑒𝑑 is north.

Proof. (a) Consider 𝒮 = 𝒮[𝑎1, … , 𝑎𝑛]; then its corresponding sign sequence is

(−, … , −⏟ , +, … , +⏟ , −, … , −⏟ , … , ±, … , ±⏟ );
𝑎1 𝑎2 𝑎3 … 𝑎𝑛

if we mirror 𝒮 over the line 𝑦 = 𝑥, we notice that we obtain the sign sequence

(−, +, … , +⏟ , −, … , −⏟ , … , ∓, … , ∓⏟ ).
𝑎1 − 1 𝑎2 … 𝑎𝑛

Therefore, for 𝑎1 > 1, it holds that this is an isomorphism of snake graphs. For the
case when 𝑎1 = 1, notice that if this processed is reversed, it yields an isomorphism.

(b) Define ̃𝒮 to be the snake graph 𝒮 after being mirrored over the line 𝑦 = −𝑥. Let
̃𝑒1, … , ̃𝑒𝑑−1 be the inner edges of ̃𝒮; and let 𝑒0 be the south edge of the first tile,

𝐺1, of 𝒮. By mirroring, we obtain a map 𝒮
𝜑
−→ ̃𝒮, such that it maps the first tile

of 𝒮, to the last tile of ̃𝒮. Say 𝑒𝑑 is the east edge of the last tile, of 𝒮; then under
𝜑, it is mapped to the south edge of the first tile of ̃𝒮; say ̃𝑒0. Conversely, if 𝑒𝑑 is
the north edge of the last tile of 𝒮, then it is mapped to the west edge of the first
tile of ̃𝒮. In either cases, we have ̃𝒮 = 𝒮[𝑎𝑛, … , 𝑎1].

(c) This follows from a similar reasoning to (b).

Consequently, since we have that 𝒮[𝑎1, … , 𝑎𝑛] ≅ 𝒮[𝑎𝑛, … , 𝑎1], via one of the appropri-
ate isomorphisms above, then we can conclude that 𝑚(𝒮[𝑎1, … , 𝑎𝑛]) = 𝑚(𝒮[𝑎𝑛, … , 𝑎1]);
which by Theorem 3.3, implies that the continued fractions [𝑎1, … , 𝑎𝑛] and [𝑎𝑛, … , 𝑎1]
have the same numerator. This yields the following corollay;

Corollary 3.6. The continued fractions [𝑎1, … , 𝑎𝑛] and [𝑎𝑛, … , 𝑎1] have the same nu-
merator.

Now consider [𝑎1. … , 𝑎𝑛]; if 𝑛 is even, then the continued fraction is said to be of even
length; moreover, it is palindromic if (𝑎1, … , 𝑎𝑛) = (𝑎𝑛, … , 𝑎1). Its corresponding snake
graph 𝒮 = 𝒮[𝑎1, … , 𝑎𝑛] is then called palindromic of even length. Lastly, we say that
𝒮 has a rotational symmetry at its center tile if 𝒮 has a tile 𝐺𝑖 such that rotation by
180∘ is an automorphism. Note that the number of tiles must be odd in order to have a
center tile; i.e., if 𝑑 is the total number of tiles then if 𝐺𝑖 is the center tile we must have
that 𝑖 = (𝑑 + 1)/2.
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Figure 3.1: Examples of snake graphs that have a rotational symmetry at their center
tile.

Theorem 3.7. A snake graph 𝒮 is palindromic of even length if and only if 𝒮 has a
rotational symmetry at its center tile.

Proof. First, suppose 𝒮 = 𝒮[𝑎1, … , 𝑎𝑛, 𝑎𝑛, … , 𝑎1] is a palindromic snake graph of even
length. Let 𝑑 be the number its number of tiles and observe that by definition, 𝑑 =
𝑎1 + ⋯ + 𝑎𝑛 + 𝑎𝑛 + ⋯ + 𝑎1 − 1 = 2(𝑎1, … , 𝑎𝑛) − 1; so we have that 𝑑 is odd; then let
𝐺𝑖 be its center tile and notice that 𝑖 = (𝑑 + 1)/2. Observe that the subsnake graph
consisting of the first 𝑖−1 tiles is isomorphic to 𝒮[𝑎1, … , 𝑎𝑛]; and similarly the subsnake
graph consisting of the last 𝑖 − 1 tiles is then isomorphic to 𝒮[𝑎𝑛, … , 𝑎1]. Consequently,
note that the subsnake graph formed by the tiles 𝐺𝑖−1, 𝐺𝑖, 𝐺𝑖+1 is isomorphic to 𝒮[2, 2];
so the interior edges 𝑒𝑖−1 and 𝑒𝑖 are parallel; and since 𝑒𝑖−1 is the last interior edge of
𝒮[𝑎1, … , 𝑎𝑛], and 𝑒𝑖 is the first interior edge of 𝒮[𝑎𝑛, … , 𝑎1], it holds that 𝑒0 and 𝑒𝑑 are
parallel. Recall that 𝑒0 is the south exterior edge of the first tile 𝐺1, so 𝑒𝑑 must be the
north edge of the last tile 𝐺𝑑. By Theorem 3.5, we have that rotation by 180∘ at tile 𝐺𝑖
is an automorphism.

On the other hand, suppose 𝒮 has a rotational symmetry at its center tile 𝐺𝑖; then it
is clear that the tiles 𝐺𝑖−1, 𝐺𝑖, 𝐺𝑖+1 form a snake graph that is isomorphic to 𝒮[2, 2]; so
the interior edges 𝑒𝑖−1 and 𝑒𝑖 have different signs. Define 𝒮[𝑎1, … , 𝑎𝑗] to be the snake
graph consisting of the first 𝑖 − 1 tiles; and 𝒮[𝑎𝑗+1, … , 𝑎𝑛] that formed by the last 𝑖 − 1
tile. Then we must have that 𝒮 is of the form 𝒮[𝑎1, … , 𝑎𝑗, 𝑎𝑗+1, … , 𝑎𝑛]. By rotational
symmetry, we have (𝑎1, … , 𝑎𝑗) = (𝑎𝑛, … , 𝑎𝑗+1); as required.

To illustrate Theorem 3.7, notice that in figure 3.1, on the left, we have the snake
graph 𝒮[3, 3], and on the right we have 𝒮[2, 1, 2, 2, 1, 2]; both of which are palindromic
of even length. Next, consider a snake graph 𝒮 = 𝒮[𝑎1, … , 𝑎𝑛]. We define the palin-
dromification of 𝒮, 𝒮↔, to be 𝒮↔ = 𝒮[𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛]; that is, we glue two copies
of 𝒮 together, via a new center tile.

Let 𝑏𝑖 be the single edge corresponding to the tile 𝐺𝑙𝑖
in 𝒮[𝑎1, … , 𝑎𝑛], 𝑏0 the unique

edge in the first tile 𝐺1 apart from the edge 𝑒0, and 𝑏𝑛 the unique edge in the last tile
𝐺𝑑 apart from the edge 𝑒𝑑. In [CS2], through a process called grafting (see also [CS3]),
which is simply a way to represent the snake graph of a self-crossing arc as the sum
of the snake graphs of the arcs obtained after the smoothing process at the point of
self-crossing, the authors proved the following identity;
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Theorem 3.8. If we set 𝑏0 = 𝒮[𝑎1, … , 𝑎0], and 𝑏𝑛 = 𝒮[𝑎𝑛+1, … , 𝑎𝑛], we obtain the
following identity;

𝑏𝑖𝒮[𝑎1, … , 𝑎𝑛] = 𝒮[𝑎1, … , 𝑎𝑖]𝒮[𝑎𝑖+1, … , 𝑎𝑛] + 𝒮[𝑎1, … , 𝑎𝑖−1]𝒮[𝑎𝑖+2, … , 𝑎𝑛].

Through the above theorem, notice that if we apply it to 𝒮↔ = 𝒮[𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛]
for 𝑖 = 𝑛, we get the following;

𝑏𝑛𝒮[𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛] = 𝒮[𝑎𝑛, … , 𝑎𝑛]𝒮[𝑎1, … , 𝑎𝑛] + 𝒮[𝑎𝑛, … , 𝑎2]𝒮[𝑎2, … , 𝑎𝑛].

that is, by symmetry, we have

𝒮[𝑎1, … , 𝑎𝑛]2 + 𝒮[𝑎2, … , 𝑎𝑛]2 = 𝒮𝒮 + ̃𝒮 ̃𝒮 (3.2)

so we obtain that 𝑚(𝒮↔) = 𝑚(𝒮)2 + 𝑚( ̃𝒮)2; where ̃𝒮 = 𝒮[𝑎2, … , 𝑎𝑛]. This leads to the
following result;

Theorem 3.9. Let 𝒮 = 𝒮[𝑎1, 𝑎2, … , 𝑎𝑛] with 𝒮↔ its palindromification. Let ̃𝒮 =
𝒮[𝑎2, … , 𝑎𝑛]; then

𝑚(𝒮↔) = 𝑚(𝒮)2 + 𝑚( ̃𝒮)2.

Consequently, we obtain the following corollary;

Corollary 3.10. Let [𝑎1, … , 𝑎𝑛] = 𝑝𝑛/𝑞𝑛; then

[𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛] = 𝑝2
𝑛 + 𝑞2

𝑛
𝑝𝑛−1𝑝𝑛 + 𝑞𝑛−1𝑞𝑛

.

Proof. Notice that by Theorem 3.3, we have;

[𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛] = 𝑚(𝒮↔)
𝑚(𝒮[𝑎𝑛−1, … , 𝑎1, 𝑎1, … , 𝑎𝑛])

(3.3)

where via Theorem 3.9 and 3.8, the right side becomes;

𝑚(𝒮)2 + 𝑚( ̃𝒮)2

𝑚(𝒮[𝑎𝑛−1, … , 𝑎1])𝑚(𝒮[𝑎1, … , 𝑎𝑛]) + 𝑚(𝒮[𝑎𝑛−1, … , 𝑎2])𝑚(𝒮[𝑎2, … , 𝑎𝑛])
;

which by symmetry it is equal to 𝑝2
𝑛 + 𝑞2

𝑛
𝑝𝑛−1𝑝𝑛 + 𝑞𝑛−1𝑞𝑛

.

Example 3.11. Consider the continued fraction [3, 1, 5] = 23/6; then observe that
[3, 1] = 4, and its palindromification

[5, 1, 3, 3, 1, 5] = 565
98

= 232 + 62

4 ⋅ 23 + 1 ⋅ 6
.

Suppose that we have an integer 𝑁, such that we can write 𝑁 = 𝑝2 + 𝑞2, where
𝑝 > 𝑞 ≥ 1 such that gcd(𝑝, 𝑞) = 1. Then we say that 𝑁 is a sum of two relatively prime
squares. Consequently, we obtain the following corollary;
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Corollary 3.12.

(a) If 𝑁 is a sum of two relatively prime squares, then there exists a palindromic snake
graph of even length 𝒮 such that 𝑚(𝒮) = 𝑁;

(b) For each positive integer 𝑁, the number of ways one can write 𝑁 as a sum of two
relatively prime squares is equal to is equal to half the number of palindromic snake
graphs of even length with 𝑁 perfect matchings;

(c) For each positive integer 𝑁, the number of ways one can write 𝑁 as a sum of
two relatively prime squares is equal to half the number of palindromic continued
fractions of even length with numerator equal to 𝑁.

Proof. For part (a), suppose 𝑝 > 𝑞 ≥ 1, with gcd(𝑝, 𝑞) = 1; and let [𝑎1, … , 𝑎𝑛] =
𝑝/𝑞. Then by Theorem 3.9, and Theorem 3.3, it follows that 𝒮[𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛] has
precisely 𝑁 perfect matchings. For part (b) and (c), the bijections given in Theorem 3.4
suffice.
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4 Frobenius’ Conjecture and
Markov Numbers

In number theory, more precisely, in the theory of Diophantine equations, one that is of
particular interest is Markov’s equation;

𝑥2 + 𝑦2 + 𝑧2 = 3𝑥𝑦𝑧. (4.1)

A triple (𝑎, 𝑏, 𝑐), 𝑎 ≤ 𝑏 ≤ 𝑐, that is a solution to 4.1 is called a Markov triple, and 𝑎, 𝑏,
and 𝑐 are called Markov numbers. A few of these are (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13),
(1, 89, 233), (5, 29, 433). It is known that every other Fibonacci number is a Markov
number, and so is every Pell number. The essence of Frobenius’ conjecture is that of
uniqueness of solutions;

Conjecture 4.1 (Frobenius’ Uniqueness Conjecture). Let (𝑎1, 𝑏1, 𝑐1) and (𝑎2, 𝑏2, 𝑐2) be
Markov triples. If 𝑐1 = 𝑐2, then 𝑎1 = 𝑎2 and 𝑏1 = 𝑏2.

In other words, Frobenius conjectured that every Markov triple is uniquely determined
by its largest element.

4.1 Markov generating function
We begin by considering the torus 𝒯2 as the quotient space

𝒯2 ≅ ℐ × ℐ/ ∼𝑛𝑠∼𝑤𝑒,

where ℐ = [0, 1] ⊆ ℝ, and ∼𝑛𝑠, ∼𝑤𝑒 are the equivalence relations identifying north with
south and west with east. Next, we triangulate it; which is much easier to do when
viewing it via the quotient (as it is simply a diagonal) than as a 3-dimensional manifold;
and then we remove a single point, more precisely the point (0, 0) ∼ (0, 1) ∼ (1, 0) ∼
(1, 1). In the figure below, we have the following image.
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Figure 4.1: Triangulated torus 𝒯2.

After we label each side (of which there are 3) we fix a clockwise orientation; i.e. as
we approach where two diagonals meet, the orientation is as follows;

If we then apply it to our construction, we obtain the following;

1

1

2

2

3

1

1

2

2

3

Observe that now we have precisely 2 arrows 1 → 3, 2 arrows 3 → 2 and 2 arrows
2 → 1; which we can then use to construct the following quiver 𝒬;

2

1 3
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This is also known as the Markov quiver. Let x = (𝑥1, 𝑥2, 𝑥3), and y = (1, 1, 1); then
define the seed (x, y, 𝒬) and consider the mutation 𝜇1.1 Recall that since y is a vector
of 1’s, we can leave it out throughout our calculations. Consequently, we obtain that
𝑥′

1 = (𝑥2
2 + 𝑥2

3)/𝑥1; and through (4.1), 𝑥′

1 = 3𝑥2𝑥3 − 𝑥1; i.e. 𝜇1 acts on a triple (𝑥, 𝑦, 𝑧)
by

(𝑥, 𝑦, 𝑧)
𝜇1
−→ (3𝑦𝑧 − 𝑥, 𝑦, 𝑧). (4.2)

Observe that, given 𝑥 ≤ 𝑦 ≤ 𝑧 such that 𝑥2 + 𝑦2 + 𝑧2 = 3𝑥𝑦𝑧; i.e. (𝑥, 𝑦, 𝑧) is a Markov
triple, then

(3𝑦𝑧 − 𝑥)2 + 𝑦2 + 𝑧2 = 9𝑦2𝑧2 − 6𝑥𝑦𝑧 + 𝑥2 + 𝑦2 + 𝑧2

= 9𝑦2𝑧2 − 6𝑥𝑦𝑧 + 3𝑥𝑦𝑧
= 9𝑦2𝑧2 − 3𝑥𝑦𝑧
= 3(3𝑦𝑧 − 𝑥)𝑦𝑧.

Thus, we see that that if (𝑥, 𝑦, 𝑧) is a Markov triple then 𝜇1(𝑥, 𝑦, 𝑧) = (3𝑦𝑧 − 𝑥, 𝑦, 𝑧) is
also a Markov triple.

For example, begin with (𝑥, 𝑦, 𝑧) = (1, 1, 1), then

𝜇1(1, 1, 1) = (2, 1, 1) ∼ (1, 1, 2),
𝜇1(1, 1, 2) = (5, 1, 2) ∼ (1, 2, 5),
𝜇1(1, 2, 5) = (29, 2, 5) ∼ (2, 5, 29),

𝜇1(2, 5, 29) = (433, 5, 29) ∼ (5, 29, 433),
⋮

If we apply it to all Markov triples, we can construct a branch of the Markov Number
Tree;

(1,1,1) (1,1,2) (1,2,5)

(1,5,13)

(2,5,29)

(5,29,433)

(2,29,169)

(5,13,194)

(1,13,34)

(29,433,37666)

(2,169,985)

(5,194,2897)

(13,194,7651)

(5,433,6466)

(29,169,14701)

(13,34,1325)

(1,34,89)

1

2

5

13

34

194

433

169

29

1Vertex 1 is obviously arbitrary, and we could have taken 𝜇2 or 𝜇3 without yielding meaningfully
different results.
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The same process can be done to yield two the other mutations 𝜇2, 𝜇3. Similarly, for
all three we have that if we start with a Markov triple (𝑥, 𝑦, 𝑧), then 𝜇𝑖(𝑥, 𝑦, 𝑧) is also
a Markov triple. However, 𝜇𝑖(𝑥, 𝑦, 𝑧) need not be equal to 𝜇𝑗(𝑥, 𝑦, 𝑧), for 𝑖 ≠ 𝑗. For
example, if we take 𝜇2 (the reader might like to prove that (𝑥, 𝑦, 𝑧)

𝜇2
−→ (𝑥, 3𝑥𝑧 − 𝑦, 𝑧))

we can see that;

𝜇2(1, 2, 5) = (1, 13, 5) ∼ (1, 5, 13) ≠ (2, 5, 19) = 𝜇1(1, 2, 5).

Meaning that we can go from triple to triple, in the Markov tree, by a sequence of these
mutations. Additionally, the resulting quiver, after any of these mutations, becomes;

2

1 3

which is clearly just the initial Markov quiver simply with all arrows inverted. This
yields the following corollary;

Corollary 4.2. The Markov quiver has a single equivalence class with respect to cluster
mutations.

4.2 Markov Numbers
As seen in the previous section, Markov triples are related to the clusters of the cluster
algebra corresponding to the once-punctured torus. As the cluster variables are com-
puted by snake graphs, we can view Markov numbers in terms of snake graphs. First
off, begin by considering the natural number lattice ℕ × ℕ,

Figure 4.2: Natural number lattice ℕ × ℕ.
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Suppose we now pick a slope 𝑝/𝑞 where gcd(𝑝, 𝑞) = 1 and 𝑝 < 𝑞; then there is an
associated Markov number 𝑚𝑝/𝑞; which is exactly the number of terms in the numerator
of the cluster variable represented by the line segment from (0, 0) to (𝑞, 𝑝). For example,
consider the fraction 4/9.

(9,4)

Figure 4.3: The slope 4/9 with its lower Christoffel path with in blue, and its correspond-
ing snake graph (called a Markov snake graph) obtained by placing half unit
squares on the Christoffel path leaving the first and last steps empty.

In Figure 4.2, we see that the continued fraction corresponding to the snake graph is
precisely the palindromic continued fraction of even length [2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2];
which corresponds to the fraction 43261/16725. One can check that its numerator,
43261, is a Markov number; more precisely, it belongs to the Markov triple (5, 2897, 43261).
In other words, we have that 𝑚4/9 = 43261.

For arbitrary 𝑝, 𝑞, the continued fraction corresponding to the snake graph as we
constructed above is precisely

[2, 1, … , 1⏟ , 2, 2, 1, … , 1⏟ , 2, 2, ⋯ 2, 2, 1, … , 1⏟ , 2];
2(𝑣1 − 1) 2(𝑣2 − 1) … 2(𝑣𝑝 − 1)

where 𝑣𝑖, for all 𝑖 = 1, … , 𝑝, is calculated as follows;

𝑣1 = ⌊𝑞
𝑝

⌋ ;

𝑣𝑖 = ⌊𝑖𝑞
𝑝

⌋ −
𝑖−1
∑
𝑗=1

𝑣𝑗, for 𝑖 = 1, … , 𝑝 − 1;

𝑣𝑝 = 𝑞 − 1 −
𝑝−1

∑
𝑗=1

𝑣𝑗.

A continued fraction of this form is called of Markov type. Through the above, we may
now formulate the following result, which was proven by Frobenius;

Theorem 4.3 ([F], Section 10). Every Markov number 𝑚𝑝/𝑞 is the numerator of a
palindromic continued fraction [𝑎𝑛, … , 𝑎2, 𝑎1, 𝑎1, 𝑎2, … , 𝑎𝑛] of even length such that;
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1. 𝑎𝑖 ∈ {1, 2}, 𝑎𝑛 = 2;

2. If 𝑝 + 1 = 𝑞, then 𝑛 = 𝑝 and 𝑎𝑖 = 2 for all 𝑖;

3. If 𝑝 + 1 < 𝑞 then 𝑐 − 1
𝑐

< 𝑝
𝑞

< 𝑐
𝑐 + 1

, for a unique positive integer 𝑐 and;

(i) there are at most 𝑝 + 1 subsequences of 2s; the first and last are of odd length
2𝑐 − 1 and all others are of even length 2𝑐 or 2𝑐 + 2;

(ii) there are at most 𝑝 maximal subsequences of 1s; each of which is of even
length 2(𝑣𝑖 − 1) and |𝑣𝑖 − 𝑣𝑗| ≤ 1 for all 𝑖 ≠ 𝑗.

Moreover, the resulting map

𝑝/𝑞 ↦ [𝑎𝑛, … , 𝑎2, 𝑎1, 𝑎1, 𝑎2, … , 𝑎𝑛]

from rational numbers between 0 and 1 to palindromic continued fractions of even length
is injective.

Via the above theorem, together with Corollary 3.10, we obtain the following result;

Corollary 4.4. Every Markov number (except for 1 and 2) is the sum of two relatively
prime squares.

Note that given any Markov number 𝑚, the decomposition described above need not
be unique. For example, consider the Markov number 610, and notice that 610 = 232+92

or 610 = 212 + 132. Moreover, notice that 21/13 = [1, 1, 1, 1, 1, 2], with palindromifica-
tion [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]; which corresponds to the slope 1/7; i.e. 𝑚1/7 = 610.
On the other hand, 23/9 = [2, 1, 1, 4], with palindromification [4, 1, 1, 2, 2, 1, 1, 4], which
is not of Markov type. This yields the following corollary;

Corollary 4.5. Let 𝑚 > 2 be a Markov number. Then there exist positive integers 𝑎 < 𝑏
with gcd(𝑎, 𝑏) = 1 such that 𝑚 = 𝑎2 + 𝑏2, 2𝑎 ≤ 𝑏 < 3𝑎 and

(i) the palindromification of the snake graph 𝒮(𝑏/𝑎)2 is of Markov type;

(ii) the continued fraction expansion of 𝑏/𝑎 consists entirely of 1s and 2s.

Proof. Let 𝑝/𝑞 be a slope such that 𝑚 = 𝑚𝑝/𝑞, and let [𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛] be its
corresponding continued fraction via the map in Theorem 4.3; more precisely, 𝑚 is the
numerator of the continued fraction above, and the snake graph 𝒮[𝑎𝑛, … , 𝑎1, 𝑎1, … , 𝑎𝑛]
is of Markov type. Next, let 𝑏/𝑎 = [𝑎1, … , 𝑎𝑛] with 0 < 𝑎 < 𝑏 and gcd(𝑎, 𝑏) = 1; then as
𝑎1 = 2, we see that 2𝑎 ≤ 𝑏 < 3𝑎; where 2𝑎 = 𝑏 ⟺ 𝑎 = 1 ⟹ 𝑚 = 5. By Corollary
3.10, we have that 𝑚 = 𝑎2 +𝑏2; which proves part (i). Moreover, by the injective map in
Theorem 4.3, any Markov snake graph has a corresponding continued fraction consisting
entirely of 1s and 2s. This proves part (ii).

2If [𝑎1, … , 𝑎𝑛] is the continued fraction corresponding to 𝑏/𝑎, then 𝒮(𝑏/𝑎) = 𝒮[𝑎1, … , 𝑎𝑛].
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The authors in [CS1] conjectured that the pair (𝑎, 𝑏) in the above corollary is uniquely
determined by the Markov number. Which leads us to the following conjecture;

Conjecture 4.6. Let 𝑚 > 2 be a Markov number. Then there exist unique positive
integers 𝑎 < 𝑏 with gcd(𝑎, 𝑏) = 1 such that 𝑚2 = 𝑎2 + 𝑏2, 2𝑎 ≤ 𝑏 < 3𝑎 and the
palindromification of the snake graph 𝒮(𝑏/𝑎) is a Markov snake graph.

The following statement is stronger.

Conjecture 4.7. Let 𝑚 > 2 be a Markov number. Then there exist unique positive
integers 𝑎 < 𝑏 with gcd(𝑎, 𝑏) = 1 such that 𝑚2 = 𝑎2 + 𝑏2, 2𝑎 ≤ 𝑏 < 3𝑎 and the
palindromification of the snake graph 𝒮(𝑏/𝑎) contains only 1s and 2s.

These conjectures have both been checked via computer for all Markov numbers of
slope 𝑝/𝑞 with 𝑝 < 𝑞 < 70; which are precisely 1493 numbers; the largest of which being

56790444570379838361685067712119508786523129590198509.

Moreover, we have the following result from [CS1].

Theorem 4.8.

(a) Conjecture 4.7 implies Conjecture 4.6.

(b) Conjecture 4.6 is equivalent to Conjecture 4.1.

Ultimately, we obtained that Conjecture 4.6 is essentially a reformulation of Frobenius’
conjecture in Cluster algebraic terms. This has great ramifications in the study of
Markov’s equation as it allows the problem to be attacked from a different angle.

4.3 Ordering of Markov numbers
Consider the triangulated natural number lattice, where we have a diagonal from the
south-east corner to the north-west corner denoted by 3; in other words we have that
every lattice square in 4.2 is replaced by a labeled triangulated torus. Suppose we have
two lattice points 𝐴 and 𝐵, and a line 𝑙𝐴𝐵 from 𝐴 to 𝐵; it follows that the line has slope
𝑟/𝑠, where (𝑠, 𝑟) is the point 𝐵 − 𝐴. Recall that if gcd(𝑟, 𝑠) = 1, then this line does not
intersect any other lattice point.

Say we have the contrary, so 𝑟/𝑠 reduces to a simplified fraction 𝑝/𝑞 and gcd(𝑝, 𝑞) = 1;
then the line 𝑙𝑎𝑏 intersects precisely 𝑡+1 lattice points, where 𝑡 =gcd(𝑟, 𝑠); denote these
by 𝑃0 = 𝐴, 𝑃1, … , 𝑃𝑡 = 𝐵, and note that 𝑃𝑖 = 𝐴 + (𝑞, 𝑝)𝑖, for 𝑖 = 0, 1 … , 𝑡. Since
crossing lattice points in the integer plane, implies that the corresponding arc on the
triangulated torus intersects multiple vertices; which we want to avoid as causes issues.
Therefore, we define the concepts of a left and right deformation of a line 𝑙𝐴𝐵, denoted
𝛾𝐿

𝐴𝐵 and 𝛾𝑅
𝐴𝐵 respectively.

Definition 4.9. A left deformation 𝛾𝐿
𝐴𝐵 of the line 𝑙𝐴𝐵 is an infinitesimal deformation

of 𝑙𝐴𝐵 passing on the left of the points 𝑃0, 𝑃1, … , 𝑃𝑡.
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𝐴

𝐵

𝛾𝐿
𝐴𝐵

𝛾𝑅
𝐴𝐵

3

1

2

2 3

1

𝛾𝐿
𝐴𝐵

𝛾𝑅
𝐴𝐵

Figure 4.4: Example of a left and right deformation of a line from point 𝐴 to point 𝐵
(left), and the intersections of each around a lattice point on the labeled
triangulated torus lattice (right).

Notice that if 𝑙𝐴𝐵 does not intersect any lattice point, then 𝑙𝐴𝐵 = 𝛾𝐿
𝐴𝐵 = 𝛾𝑅

𝐴𝐵.
Moreover we have the following;

Theorem 4.10. Let 𝐴 and 𝐵 be two lattice points and let 𝛾𝐿
𝐴𝐵, 𝛾𝑅

𝐴𝐵 be the left and
right-deformation of a line 𝑙𝐴𝐵. Then,

|𝛾𝐿
𝐴𝐵| = |𝛾𝑅

𝐴𝐵|; (4.3)

where |𝛾| is the number of perfect matchings of the snake graph 𝒮𝛾, known as the length
of 𝛾.

By the above theorem, we now define the following concept;

Definition 4.11. The Markov distance |𝐴𝐵| between two lattice points 𝐴, 𝐵 is

|𝐴𝐵| = |𝛾𝐿
𝐴𝐵|.

With this definition if we consider a line from the origin 𝑂 to a point 𝐴 = (𝑞, 𝑝) with
slope 𝑝/𝑞, then |𝑂𝐴| is the number of perfect matchings of the snake graph 𝒮𝛾𝐿

𝑂𝐴
; denote

this by 𝑚𝑞,𝑝. Observe that if 𝑝 and 𝑞 are coprime, then 𝑚𝑞,𝑝 is a Markov number; more
precisely, 𝑚𝑞,𝑝 = 𝑚𝑝/𝑞.

By a very involved argument through Skein relations, the authors in [KLRS] proved
that for any two lattice points 𝐴, 𝐵, given any arc 𝛾 from 𝐴 to 𝐵, then |𝐴𝐵| ≤ |𝛾|. This
yields the following corollary, also known as Ptolemy’s inequality;

Corollary 4.12. Given any four points 𝐴, 𝐵, 𝐶, 𝐷 in the plane such that the lines
𝑙𝐴𝐵, 𝑙𝐵𝐶, 𝑙𝐶𝐷, 𝑙𝐷𝐴 form a convex quadrilateral with diagonals 𝑙𝐴𝐶 and 𝑙𝐵𝐷, then we have

|𝐴𝐶||𝐵𝐷| ≥ |𝐴𝐵||𝐶𝐷| + |𝐴𝐷||𝐵𝐶|.
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Figure 4.5: Ptolemy’s relations.

Through the above, we can now state and prove one of Aigner’s conjectures in [A];

Theorem 4.13. For all integers 0 ≤ 𝑝 ≤ 𝑞 we have the following:

𝑚𝑞,𝑝 < 𝑚𝑞,𝑝+1 (4.4)
𝑚𝑞,𝑝 < 𝑚𝑞+1,𝑝 (4.5)
𝑚𝑞,𝑝 < 𝑚𝑞+1,𝑝−1 (4.6)

Proof. Let 𝐴 = (0, 0), 𝐵 = (𝑞, 𝑝), 𝐶 = (𝑞+1, 𝑝) and 𝐷 = (𝑞+1, 𝑝−1), then by Ptolemy’s
relations, we have that

|𝐴𝐶||𝐵𝐷| ≥ |𝐴𝐵||𝐶𝐷| + |𝐴𝐷| + |𝐵𝐶|.

Since 𝐵𝐷, 𝐶𝐷, 𝐵𝐶 are arcs in our triangulation, the number of perfect matchings of
their corresponding snake graph is exactly 1; i.e. |𝐵𝐶| = |𝐶𝐷| = |𝐵𝐷| = 1, and so we
get |𝐴𝐶| ≤ |𝐴𝐵| + |𝐴𝐷|; which yields that |𝐴𝐶| > |𝐴𝐵| and |𝐴𝐶| > |𝐴𝐷|; which prove
the (4.4) and (4.5); respectively. For 4.6, let 𝐸 = (𝑞 − 𝑝 + 1, 0); then 𝐵 − 𝐸 = (𝑝 − 1, 𝑝)
and 𝐷 − 𝐸 = (𝑝, 𝑝 − 1); so |𝐷𝐸| = |𝐵𝐸|; and if we consider the quadrilateral with
vertices 𝐴, 𝐵, 𝐷, 𝐸, via Ptolemy’s relations we get

|𝐴𝐷||𝐵𝐸| ≥ |𝐴𝐵||𝐷𝐸| + |𝐵𝐷||𝐴𝐸|;

which gives that |𝐴𝐷||𝐵𝐸| > |𝐴𝐵||𝐷𝐸|. Which proves (4.6).
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For example, consider the pair (𝑝, 𝑞) = (7, 11). Observe that we have 𝑚11,7 = 𝑚7/11 =
3276509, and

𝑚11,8 = 𝑚8/11 = 7453378; 𝑚12,7 = 𝑚7/12 = 8399329; 𝑚12,6 = 3729600.

Thus, the inequalities from the theorem above are satisfied.
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5 Conclusion
In this paper we looked at the foundational ideas of Cluster algebras, specifically those
of surface type; and we discussed the combinatorial aspects such as snake graphs and
Skein relations. Via continued fractions we described the concept of palindromification;
which we used to construct a framework for understanding how Markov numbers relate
to palindromic continued fractions; such as Frobenius’ result that states every Markov
number is the numerator of the palindromic continued fraction of even length consisting
of only 1s and 2s (with a few other restrictions). We were then able to prove different
results on the structure of each Markov number; such as that every Markov number is
the sum of two relatively prime squares.

Using the once punctured torus, we described a deep connection between solutions
of Markov’s equation and Cluster algebras, by constructing a map that send a Markov
triple to another Markov triple. Via this connection, we stated a Conjecture, purely in
Cluster algebraic terms, that is equivalent to Frobenius’ conjecture. Finally, thanks to
Skein relations, we were able to generalize the idea of a slope on the once punctured
torus lattice to slopes with not necessarily relatively prime coordinates, via the concepts
of left and right deformations. Using Ptolemy’s relations, we were then able to prove
one of Aigner’s conjectures on the ordering of Markov numbers. In conclusion, we had
a close look at how the Markov numbers behave individually as well as in groups; which
will hopefully, one day, lead us to a clearer understanding of Frobenius’ conjecture and
Markov’s equation.
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